The Elusive Asymptotic Behavior of the High - Temperature Expansion of the Hierarchical Ising Model

نویسندگان

  • Y. Meurice
  • G. Ordaz
چکیده

We present a differential formulation of the recursion formula of the hierarchical model which provides a recursive method of calculation for the high-temperature expansion. We calculate the first 30 coefficients of the high temperature expansion of the magnetic susceptibility of the Ising hierarchical model with 12 significant digits. We study the departure from the approximation which consists of identifying the coefficients with the values they would take if a [0, 1] Padé approximant were exact. We show that, when the order in the high-temperature expansion increases, the departure from this approximation grows more slowly than for nearest neighbor models. As a consequence, the value of the critical exponent γ estimated using Padé approximants converges very slowly and the estimations using 30 coefficients have errors larger than 0.05. A (presumably much) larger number of coefficients is necessary to obtain the critical exponents with a precision comparable to the precision obtained for nearest neighbor models with less coefficients. We also discuss the possibility of constructing models where a [0, 1] Padé approximant would be exact.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High order perturbation study of the frustrated quantum Ising chain

In this paper, using high order perturbative series expansion method, the critical exponents of the order parameter and susceptibility in transition from ferromagnetic to disordered phases for 1D quantum Ising model in transverse field, with ferromagnetic nearest neighbor and anti-ferromagnetic next to nearest neighbor interactions, are calculated. It is found that for small value of the frustr...

متن کامل

بسط دمای بالای پذیرفتاری مدل آیزینگ شبکه کاگومه با برهم‌کنش نزدیکترین همسایه‌ها

 The Ising model is one of the simplest models describing the interacting particles. In this work, we calculate the high temperature series expansions of zero field susceptibility of ising model with ferromagnetic, antiferromagnetic and one antiferromagnetic interactions on two dimensional kagome lattice. Using the Pade´ approximation, we calculate the susceptibility of critical exponent of fer...

متن کامل

U.Iowa 94-03 hep-lat/9401016 January 12, 1994 A Numerical Study of the Hierarchical Ising Model: High Temperature Versus Epsilon Expansion

We study numerically the magnetic susceptibility of the hierarchical model with Ising spins ( = 1) above the critical temperature and for two values of the epsilon parameter. The integrations are performed exactly using recursive methods which exploit the symmetries of the model. Lattices with up to 2 sites have been used. Surprisingly, the numerical data can be tted very well with a simple pow...

متن کامل

A Numerical Study of the Hierarchical Ising Model: High Temperature Versus Epsilon Expansion

We study numerically the magnetic susceptibility of the hierarchical model with Ising spins (σ = ±1) above the critical temperature and for two values of the epsilon parameter. The integrations are performed exactly using recursive methods which exploit the symmetries of the model. Lattices with up to 218 sites have been used. Surprisingly, the numerical data can be fitted very well with a simp...

متن کامل

Magnetic Properties and Phase Transitions in a Spin-1 Random Transverse Ising Model on Simple Cubic Lattice

Within the effective-field theory with correlations (EFT), a transverse random field spin-1 Ising model on the simple cubic (z=6) lattice is studied. The phase diagrams, the behavior of critical points, transverse magnetization,  internal energy, magnetic specific heat are obtained numerically and discussed for different values of p the concentration of the random transverse field.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1995